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Machine learning in healthcare 
Over the last five years there have been 
significant advances in high performance 
computing that have led to enormous 
scientific breakthroughs in the field of 
machine learning (a form of artificial 
intelligence), especially with regard to 
image processing and data analysis. These 
breakthroughs now affect multiple aspects 
of our lives, from the way our phone sorts 
and recognises photographs, to automated 
translation and transcription services, and 
have the potential to revolutionise the 
practice of medicine.  

The most promising form of artificial 
intelligence used in medical applications 
today is deep learning. Deep learning is a 
type of machine learning in which deep 
neural networks are trained to identify 
patterns in data [1]. A common form of 
neural network used in image processing 
is a convolutional neural network 
(CNN). Initially developed for general-
purpose visual recognition, it has shown 
considerable promise in, for instance, the 
detection and classification of disease on 
medical imaging.  

Automated image segmentation has 
numerous clinical applications, ranging 
from quantitative measurement of tissue 
volume, through surgical planning/
guidance, medical education and even 
cancer treatment planning. It is hoped that 
such advances in automated data analysis 
will help in the delivery of more timely 
care, and alleviate workforce shortages in 
areas such as breast cancer screening [2], 
where patient demand for screening already 
outstrips the availability of specialist breast 
radiologists in many parts of the world. 

Applications in otolaryngology 
Artificial intelligence is quickly 
making its way into our specialty. Both 
otolaryngologists and audiologists will 
soon be incorporating this technology into 
their clinical practices. Machine learning 
has been used to automatically classify 
auditory brainstem responses [8] and 
estimate audiometric thresholds [9]. This 
has allowed for accurate online testing 
[10], which could be used for rural and 
remote areas without access to standard 
audiometry (see the article in this issue by 
Dr Matthew Bromwich).    

Machine learning algorithms have 
also been central to the development of 
multiple assistive technologies that can 
help patients to overcome or alleviate 
disabilities. For example, in the context 
of hearing loss, significant advances in 
automated transcription apps, driven by 
machine learning algorithms, have proven 
particularly useful in recent months for 
patients who find themselves unable to 
lipread due to the use of face coverings to 
prevent the spread of COVID-19. 

In addition to their role in general image 
classification, CNNs are likely to play 
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Figure 1. (A) CT scan of the right temporal bone. (B) Structures of the temporal bone automatically segmented using a TensorFlow based deep learning algorithm. (C)  Three-dimensional model 
of the critical structures of the temporal bone to be used for surgical planning and simulation. Images courtesy of the Auditory Biophysics Laboratory, Western University, London, Canada.   
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a significant role in the introduction of 
machine learning in healthcare, especially 
in image-heavy specialties such as 
otolaryngology. For otologists, deep learning 
algorithms can already identify detailed 
temporal bone structures from CT images 
[3-6], segment intracochlear anatomy [7], 
and identify individual cochlear implant 
electrodes [8] (Figure 1); automatic analysis 
of critical structures on temporal bone scans 
have already facilitated patient-specific 
virtual reality otologic surgery [9] (Figure 2). 
Deep learning will likely also be critical in 
customised cochlear implant programming 
in the future.    

Convolutional neural networks have also 
been used in rhinology to automatically 
delineate critical anatomy and quantify 
sinus opacification [10-12]. Deep learning 
networks have been used in head and 
neck oncology to automatically segment 

anatomic structures to accelerate 
radiotherapy planning [13-18]. For 
laryngologists, voice analysis software 
will likely incorporate machine learning 
classifiers to identify pathology as it 
has been shown to perform better than 
traditional rule-based algorithms  [19].  

CONCLUSION  
In summary, artificial intelligence and, 
in particular, deep learning algorithms 
will radically change the way we manage 
patients within our careers. Although 
developed in high-resource settings, 
the technology has equally significant 
applications in low-resource settings to 
facilitate quality care even in the presence of 
limited human resources. This and more will 
be explored in more detail in the scientific 
programme in Vancouver. 

“Automatic analysis of critical structures on temporal 
bone scans have already facilitated patient-specific virtual 
reality otologic surgery”

Figure 2. The virtual reality simulator CardinalSim (https://cardinalsim.stanford.edu/) depicting a left mastoidectomy and facial 
recess approach. The facial nerve (yellow) and round window (blue) were automatically delineated using deep learning techniques. 
Image courtesy of the Auditory Biophysics Laboratory, Western University, London, Canada.   

Figure 3. Automated segmentation of organs at risk of damage from radiation during radiotherapy for head and neck cancer. Five 
axial slices from the scan of a 58-year-old male patient with a cancer of the right tonsil selected from the Head-Neck Cetuximab 
trial dataset (patient 0522c0416) [20,21]. Adapted with permission from the original authors [13].
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